WHY MONTE CARLO?

Robert K. Merrill, Ph.D. Senior Exploration Advisor Ammonite Resources

Project Evaluation

- Scope and Time appropriate to project goals
- Probability of Success
 - ✓ Trap
 - ✓ Seal
 - ✓ Reservoir
 - ✓ Source
 - ✓ Timing and Migration
- Geology
 - ✓ **Trap / structure mapping**
 - Definable depositional environment for reservoir
 - ✓ Reservoir packages correlate
 - ✓ Reservoir parameters are realistic and within definable ranges
 - ✓ Reservoir geometry accounted for
- > Engineering
 - ✓ Reservoir engineering parameters
 - Recovery Efficiency
 - Formation Volume Factor
 - ✓ Drainage area
 - ✓ Reserves and Resources
- Financial Return

Why Monte Carlo?

- Need to understand project uncertainty and risk to focus your efforts
- > Determine what the important parameters are
- "Point Estimates" do not reflect the uncertainty in the parameters
 - They provide no information on the reality of variation, especially in the high risk areas of the project that drive reserves, Pg, costs, NPV, IRR, etc.
 - \checkmark Hides the estimation (probability) of financial failure.
 - ✓ Your point estimates will hypnotize your team into believing the outcome and you become accountable for hitting that number.

Probability of Success (POSg)

- > Qualitative analysis results in range of probability
- > Trap
 - ✓ Presence of a trap
 - 4-way closure
 - Fault closure
 - Hydrocarbon retention capability (lateral seal)
- Seal
 - ✓ Retention capability of top sealing unit
- > Reservoir
 - ✓ **Presence of adequate quality reservoir rock**
 - Better than cutoff parameter values
- > Source
 - ✓ **Presence of source rock capable of generating hydrocarbons**
- > Timing and Migration
 - ✓ Trap formation / timing
 - ✓ Hydrocarbon generation timing
 - ✓ Hydrocarbon expulsion timing
 - Route and distance of migration pathway

Infinity

0

70%

0.00

Infinity

40%

50%

Certainty: 100.00

-Fit: Beta

60%

Forecast values

%

Pg Scatter Plots

17 August 2007

Geology & Reservoir Engineering

- > Trap mapped appropriately
 - ✓ Assess uncertainty of size
 - ✓ Define P10 and P90 range for potential Area of accumulation
- Define reservoir packages
 - ✓ Heterogeneity, i.e. compartmentalization
- > Depositional environment of reservoir
- Reservoir parameters within definable ranges
 - ✓ Net pay
 - ✓ Porosity
 - ✓ Water saturation
 - ✓ Permeability
- Reservoir geometry
- Recovery Factor
- Drainage Area
 - ✓ Number of wells

Reserves Calculation

Water Saturation

Recovery Efficiency

Risked Recoverable Resource Plots

Total Unrisked Resource

17 August 2007

Slide 10

Total Risked Resource

Validate with Trend Reserves

Sensitivity – What's Important

Economics

> Resources

> Historical or analogous decline for reservoir

> Historical distributions for expenses

NPV Forecast compatible with historical data

Portfolio analysis

Production Schedule & Price

Decline Rate

Price

Distributions Built from Historical Costs

Acreage

Net Present Value

Portfolio Management

- Examine portfolio value
- Optimize portfolio given uncertainties of each project

Why Monte Carlo: Summary

- Answer the important questions
- Focus your efforts by modelling project uncertainty
 - Provide information on the reality of variation, e.g., resources, Pg, costs, NPV, IRR, etc.
 - ✓ Determine the important parameters
- > No more "Point Estimates"
 - Determine the probability of financial failure.
 - You are now accountable for a range of uncertainty, not a point estimate.

"You will spend many years in a luxurious mansion sprawled in front of a warm fireplace."

For Further Information Contact:

Robert K. Merrill (832) 289-0494 rmerrill@catheart.com

G. Warfield (Skip) Hobbs (203) 972-1130 SkipHobbs@AmmoniteResources.com