

"It's not about describing rocks, it is about gathering information"

Descriptive Lithology: Analysis of Cuttings and Cores

Dr. Robert K. Merrill Catheart Energy, Inc.

Introduction

- Systematic approach to describing drill cuttings and cores using the binocular microscope and reflected light
- Examination and identification of sedimentary rocks and minerals
- Describing reservoir and non-reservoir facies: sandstone, limestone, and dolomite
 - ✓ Texture, Structures, Diagenesis
 - ✓ Porosity estimates
 - ✓ Test methods
 - ✓ Sources of error
- Practical applications to reinforce key concepts

Why Descriptive Lithology?

- Millions of boxes of core and cuttings
- Bypassed Plays

Catheart

- ✓ Mission Canyon
 - Many Mission Canyon Fields have Shell dry holes offsetting them
 - Shell's stratigraphic model of prograding sabhka deposits
 - Shell underestimated the risk: too few wells to test their stratigraphic concept
- ✓ Shongaloo Field State Line Graben, Arkansas 159 BCFG; 19.7 MMBO
 - Marathon discovered the field after drilling two dry holes on the crest in 1954 and 1972
 - Integrated well, core and seismic data revealed that the field's true size extended beyond and included the "dry holes"
- ✓ Trend Exploration Irian Jaya
 - Sample cuttings analysis from Shell dry holes defined the pinnacle reef fairway
 - Shell's seismic data was shot around steeply-sloped hills on the coastal plain compaction drape over the pinnacle reefs.
- ✓ James Lime
 - Cuttings of reef detritus leads to recognition of bi-modal porosity system
 - Allows water-free production in rocks with 50% water saturation on logs

Value of Cuttings & Core Description

- > Perception is that the quality of data is limited
- > Large data resource available
 - ✓ Back to the basics
 - ✓ Need to use all the data
- Facies mapping
 - ✓ Framework
 - ✓ Wireline log calibration
- Reservoir description
 - ✓ Nature of porosity
 - Pore types
 - Pore distribution
 - ✓ Diagenesis
- > Wireline log interpretation quality assurance
 - ✓ Calibration to the rocks
 - Matrix
 - Accessory minerals
 - ✓ Improved interpretation
- It is not about describing the rocks, it is about Extracting Information!

Agenda

- Introduction and Review
 - ✓ Tools and Equipment
 - ✓ Sedimentary Minerals
 - ✓ Cavings and Foreign Material
 - ✓ Rock properties, e.g. Color, Texture, Porosity
 - ✓ Oil Staining
- Rock Types and Classification
 - ✓ Clastics
 - ✓ Limestone
 - ✓ Dolomite
 - ✓ Evaporites
 - ✓ Miscellaneous
- Final Exercise

Lithologic Description Workflow

- Porosity
 - ✓ Estimating Percentage
 - ✓ Porosity Types
 - ✓ Permeability Relationship
- Sample Shows Oil Staining
- > Lithology
- Grain Size
- > Rounding
- Sorting
- Framework

Lithologic Description

- Diagenesis and Secondary Cement
- Lithologic Description
 - ✓ Lithology
 - Clastics
 - Carbonates
 - Limestone
 - Dolomite
 - ✓ Color
 - ✓ Texture
 - ✓ Accessory Minerals
 - ✓ Fossils
- Sample Preparation
- Foreign Matter and Cavings

Other Topics

- Depositional Environments
- Wireline Log Response to Lithology
- Diagenesis
 - ✓ Cementation and Kaolinization
 - ✓ Metasomatism and Dolomitization
 - ✓ Fracturing
 - ✓ Leaching

Fossils and Rock Builders

- ✓ Algae
- ✓ Coral
- ✓ Sponges

Summary

- Principals of cuttings and core examination with the binocular microscope, including sample properties and wireline log response.
- Sandstone, sandstone components, porosity and other physical characteristics.
- Siltstone and Shale
- Carbonate classification, limestone and dolomite characteristics and diagenesis
- Fossils
- Evaporites and other miscellaneous rock types
- Logging exercises

Lower Manville Sandstone Ss It gy-brn, abnt cht frag, sl dol, sil, kao cmt, lt cut, g flor S-1, K-1

Crystalline Dolomite Metasomatic Dolomite with Anhydrite Cement; Bitumen staining in pores

Dolomite: Leached & Cemented

White dolomite crystals

Carbonate Classification

www.beg.utexas.edu/indassoc/rcrl/rckfabpublic/ips01.htm Catheart Energy, Inc.

9/10/2007

Vuggy Carbonate Porosity

www.beg.utexas.edu/indassoc/rcrl/rckfabpublic/vps01.htm Catheart Energy, Inc.

9/10/2007

Wetting - Carbonates

Anhydrite Crystals

Catheart

Rock Builders

- 1. Probably a green algae.
- 2. Tubes of uniform diameter, usually thick, well-defined walls. Tubes are simple cylinders without cross partitions or perforations in the side walls.
- 3. Range: Cambrian Cretaceous.
- 1. Long considered an algae, now is thought to be a chaetetid sponge.
- 2. Similar to coralline algae, but no sporangia or conceptacles are present; differentiation of tissue into hypothallus and perithallus does not occur.
- 3. Range: Ordovician to Cretaceous; abundant in Jurassic

<u>Genus Girvanella</u>

Solenoporaceae

Foraminifera Limestone with Clove Oil

Thamnopora & Stromatoporoid

Crinoids

Anhydrite

Primary Anhydrite

Interbedded Anhydrite and Dolomite

Nodular Anhydrite: Mosaic or Chicken-wire Structure

Metasomatic replacement of limestone

Secondary Anhydrite

Secondary Anhydrite cementing and replacing dolomitized limestone.